On the Davenport constant and on the structure of extremal zero-sum free sequences

نویسندگان

  • Alfred Geroldinger
  • Manfred Liebmann
  • Andreas Philipp
چکیده

Let G = Cn1 ⊕ . . .⊕Cnr with 1 < n1 | . . . |nr be a finite abelian group, d∗(G) = n1 + . . .+ nr−r, and let d(G) denote the maximal length of a zero-sum free sequence over G. Then d(G) ≥ d∗(G), and the standing conjecture is that equality holds for G = Cr n. We show that equality does not hold for C2 ⊕ Cr 2n, where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal zero-sum free sequences over Cr 2n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum problems and coverings by proper cosets

Let G be a finite Abelian group and D(G) its Davenport constant, which is defined as the maximal length of a minimal zero-sum sequence in G. We show that various problems on zero-sum sequences in G may be interpreted as certain covering problems. Using this approach we study the Davenport constant of groups of the form (Z/nZ)r , with n ≥ 2 and r ∈ N. For elementary p-groups G, we derive a resul...

متن کامل

Long Minimal Zero - Sum Sequences in the Groups

The article discusses su ciently long minimal zero-sum sequences over groups of the form C 1 2 C2k, with rank r 3. Their structure is clarified by general results in the first part. The conclusions are applied to the Davenport problems, direct and inverse, for the rank-5 group C4 2 C2k. We determine its Davenport constant for k 70 and describe the longest minimal zero-sum sequences in the more ...

متن کامل

The Inverse Problem Associated to the Davenport Constant for C2+C2+C2n, and Applications to the Arithmetical Characterization of Class Groups

The inverse problem associated to the Davenport constant for some finite abelian group is the problem of determining the structure of all minimal zero-sum sequences of maximal length over this group, and more generally of long minimal zero-sum sequences. Results on the maximal multiplicity of an element in a long minimal zero-sum sequence for groups with large exponent are obtained. For groups ...

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

Inductive Methods and Zero-sum Free Sequences

A fairly long-standing conjecture is that the Davenport constant of a group G = Zn1 ⊕ · · · ⊕ Znk with n1| . . . |nk is 1 + ∑k i=1(ni − 1). This conjecture is false in general, but it remains to know for which groups it is true. By using inductive methods we prove that for two fixed integers k and ! it is possible to decide whether the conjecture is satisfied for all groups of the form Zk ⊕ Zn ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2012